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Abstract

Climate change is impacting the function and distribution of habitats used by marine,

coastal, and diadromous species. These impacts often exacerbate the anthropogenic

stressors that habitats face, particularly in the coastal environment. We conducted a climate

vulnerability assessment of 52 marine, estuarine, and riverine habitats in the Northeast U.S.

to develop an ecosystem-scale understanding of the impact of climate change on these hab-

itats. The trait-based assessment considers the overall vulnerability of a habitat to climate

change to be a function of two main components, sensitivity and exposure, and relies on a

process of expert elicitation. The climate vulnerability ranks ranged from low to very high,

with living habitats identified as the most vulnerable. Over half of the habitats examined in

this study are expected to be impacted negatively by climate change, while four habitats are
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expected to have positive effects. Coastal habitats were also identified as highly vulnerable,

in part due to the influence of non-climate anthropogenic stressors. The results of this

assessment provide regional managers and scientists with a tool to inform habitat conserva-

tion, restoration, and research priorities, fisheries and protected species management, and

coastal and ocean planning.

Introduction

Climate change is impacting all aspects of marine ecosystems [1–4]. There has been substantial

work to understand the effect of climate change on marine species and communities [5–9]. In

comparison, the effect of climate change on marine, estuarine, and riverine habitats is not as

well understood. In some cases, significant research has advanced our understanding of the

effects of climate change on individual habitats, or a single component of habitat. For example,

many studies have investigated shifting thermal habitat and its effects on species distributions

[10–15]. Other studies have explored the impacts of projected changes in the climate on living

habitats such as corals [16, 17], mollusks [18–21], seagrasses [22–24], and coastal wetlands

[25–28]. However, these studies typically focus on a limited number of climate drivers (e.g.,

temperature, pH), and do not provide a comprehensive assessment of how climate change

may affect habitats that support marine, coastal, and diadromous species (i.e., fish, inverte-

brates, and protected species). Warming waters in rivers, estuaries, and the ocean, in concert

with ocean acidification, water column stratification, deoxygenation, and sea level rise (SLR)

can interact with one another and with other stressors to cause complex and often unantici-

pated synergistic climate effects to species and habitats [4, 29–33].

Understanding how climate change will impact habitats across an ecosystem is necessary to

inform decisions about habitat conservation, fisheries management, and coastal and offshore

planning. Habitats have long been impacted by human activities such as land-use and land-

cover change, point and non-point source pollution, dredging and filling, fishing, sand and

gravel mining, oil and gas exploration, damming, and shoreline hardening [34–39]. There is a

growing understanding that climate change also has affected, and will increasingly affect, river-

ine, estuarine, and marine habitats. The effects of climate change will exacerbate the vulnera-

bility of species, habitats, and ecosystems that are already under stress from natural and

anthropogenic stressors [4, 40–42].

Habitat requirements differ by species, and as climate change affects habitats, the indirect

effects on species will be multifaceted [32, 41]. One of the most straightforward examples is the

change in species distribution as a result of warming waters [43–45]. The water column is hab-

itat for aquatic species, and most, if not all, have an optimal temperature range [29, 46, 47]; as

water temperature increases, the optimal temperature for marine species would generally shift

poleward and species distributions would follow.

There are numerous other effects of climate on habitat and thus numerous other indirect

effects of climate on species that use those habitats, especially those (e.g., coastal wetlands,

shellfish habitats, kelp forests, and corals) which provide important ecosystem services and

functions for key life stages of marine and coastal organisms [1, 4, 48]. Over the past century,

coastal wetlands have been affected by SLR, contributing to a cumulative loss of habitat [49–

54]. Coastal wetland habitat supports juvenile growth and survival for many marine fish spe-

cies [55] and their prey [56], and the climate-driven impairment of habitat may result in

decreased population productivity for sensitive species. Marsh loss also threatens the
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populations of many species of birds that depend on coastal wetland habitat for breeding, nest-

ing, and wintering [57]. Increasing temperatures may shift the geographic range of kelp beds,

with implications for the myriad fish, birds, invertebrates, and marine mammals that they sup-

port [58, 59]. Calcifying marine organisms, including mollusks, echinoderms, and corals, are

particularly sensitive to changes in pH, carbonate ion concentration, and the saturation state

of calcium carbonate minerals–collectively known as ocean acidification [20, 60–63]. Rising

temperatures and ocean acidification are negatively impacting shallow and deep sea corals [16,

17, 64]. Loss of live coral cover is related to decreases in abundance of a number of fish species;

the magnitude of decline has been associated with the dependence on live coral [64–67].

Although the effects of climate change on living habitats may be more pronounced, the

effects on habitats with primarily non-living characteristics (e.g., sand, mud, rock, water column)

cannot be overlooked. These habitats serve an important role in the reproduction of several

groups of protected species and in the foraging of other species. For example, beaches that pinni-

peds use for pupping and sea turtles use for nesting [68] may be affected by increased erosion and

inundation from SLR, and the frontal features that aggregate prey for fish, seabirds, and marine

mammals in the open ocean may shift in location and strength [69, 70]. SLR is also impacting the

intertidal foraging [71] and coastal nesting [72] habitat used by shorebirds and seabirds.

To develop an ecosystem-scale understanding of the effect of climate change on habitats,

we conducted a trait-based climate vulnerability assessment for marine, estuarine, and coastal

riverine habitats in the Northeast U.S. Shelf Ecosystem, from Cape Hatteras through the Gulf

of Maine. The coastal northeastern U.S. and the adjacent continental shelf are warming at a

particularly rapid rate [73–75] that is expected to increase [76]. Observed rates of sea level rise

in the Northeast have also been higher than the global mean, and are projected to increase

[77]. This underscores the importance of understanding how these changes will impact the

region’s habitats. A trait-based climate vulnerability assessment is one method used to evaluate

the potential risks of climate change to species or ecosystems [78–81]. An expert elicitation

process was used to estimate climate sensitivities and exposure, which can provide broad,

transparent, and relatively rapid evaluation of the vulnerability of multiple species [80, 82–84],

habitats [85, 86], or ecosystems [87]. This approach facilitates assessment of a large geographic

area with variability in the availability of data across habitats and space (e.g., habitat range and

condition, physical and chemical thresholds for habitat impacts, and limitations in downscaled

climate projections for nearshore areas). The main purpose of this assessment is to provide

information for scientists and natural resource managers to identify research priorities and

improve management decisions for these particular habitats and the species that rely on them.

Further, we seek to begin to elucidate the many indirect effects of climate change on species

through direct effects on habitats.

Methods

Method development

At a NOAA Fisheries workshop in July 2018, habitat specialists and managers reviewed litera-

ture of various existing climate vulnerability assessment (CVA) methodologies and decided to

base this habitat CVA on a hybrid of the framework developed for NOAA’s Fish Stock Climate

Vulnerability Assessment (FSCVA) [81, 88], and a habitat vulnerability model developed for

the Northeastern Association of Fish and Wildlife Agencies (NEAFWA) [85]. This hybrid

approach adapted elements from each framework to design a methodology that could be

applied to the full suite of marine, estuarine, and riverine habitats in the Northeast U.S. Using

the overall structure of the NOAA’s FSCVA allowed the results of this assessment to be easily

synthesized with the vulnerability of specific species. The NEAFWA methodology provided
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attributes indicative of the response of terrestrial and non-tidal wetland habitats to climate

change, which were adapted to marine, estuarine, and riverine habitats.

This assessment used a trait-based framework that incorporated two components: sensitiv-

ity and exposure. The general premise was that the overall climate vulnerability of a habitat is a

function of the interplay between the sensitivity and the potential exposure to future change.

Many vulnerability assessments also include an adaptive capacity component. However, adap-

tive capacity and sensitivity in biological systems are confounded; the same trait that infers

high sensitivity may be viewed as low adaptive capacity, and vice versa [89]. Therefore, we

incorporated adaptive capacity into the sensitivity component.

Habitat selection

In this assessment, habitat is defined as the coastal rivers, estuaries, and marine waters, from

the bottom through the water column including the physical, geological, chemical, and biolog-

ical components of an ecosystem that a species depends on to complete its life cycle–reproduc-

tion, development, growth, and survival [90, 91]. We included 52 habitats based on their

importance to NOAA’s trust resources (https://www.fisheries.noaa.gov/region/new-england-

mid-atlantic#species) in the Northeast U.S.: 23 marine habitats, 19 estuarine habitats, and 10

riverine habitats (Table 1). Habitats that were present in multiple systems (e.g., submerged

aquatic vegetation is present in all three systems) were assessed separately to capture differ-

ences in the climate and non-climate stressors on that habitat. Selected habitats were arranged

in a hierarchical classification system based on the Federal Geographic Data Committee

update [92] to the Cowardin Classification of Wetlands and Deepwater Habitats of the United

States [93], with some modifications. For example, categories were included for water column

habitats in the riverine, estuarine, and marine systems, which are not present in the Cowardin

classification system. The resulting classification system allows for a comparison of the climate

vulnerability of habitats across systems, sub-systems, classes, sub-classes, and geographic areas,

which can reveal patterns and key drivers of vulnerability.

Definitions were developed for features and living and non-living characteristics of each

habitat (S1 File). In order to explore patterns in the results, we also categorized the habitats

into bottom substrate, living, water column, artificial structures, and invasive species. While

each habitat was assigned to a single category based on its defining characteristics, some habi-

tats could fit in multiple categories. For example, sand and mud bottom substrates also include

living components (e.g., bivalve and gastropod infauna and epifauna communities), and inva-

sive species (e.g., Phragmites australis) are also living habitats.

For most habitats, we assessed climate vulnerability across the full geographic range of the

study area, with three exceptions: estuarine emergent native wetland, estuarine emergent inva-

sive wetland, and deep sea coral & sponge. Estuarine emergent wetlands (both native and inva-

sive sub-classes) were assessed separately in the Mid-Atlantic and New England because

biogeographic differences in coastal wetlands and/or the rate of SLR could result in differential

climate vulnerabilities for this habitat. Deep sea coral and sponge habitats were split between

the Gulf of Maine and the areas farther offshore on the Northeast U.S. Continental Shelf,

slope, submarine canyons, and seamounts to assess potential differences in climate vulnerabil-

ity associated with coral and sponge habitat density, depth, biodiversity, population genetics,

and anthropogenic drivers such as impacts from fishing gear [65, 94–98].

In addition, sub-systems, classes, and sub-classes were differentiated to capture expected

differences in sensitivity or exposure to climate change within the region. For example, emer-

gent wetlands in tidal and non-tidal portions of the riverine system were assessed separately to

evaluate the potential effects of changes in salinity and/or SLR on these two habitat types.
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Table 1. Classification of habitats included in the assessment.

System Sub-system Class Sub-class Common Name Category Geographic Area

Marine Intertidal Reef Mollusk Marine Intertidal Shellfish Reef Living Entire Area

Marine Intertidal Rocky Bottom Bedrock, Rubble, Cobble,

Gravel

Marine Intertidal Rocky Bottom Bottom

Substrate

Entire Area

Marine Intertidal Unconsolidated

Bottom

Mud Marine Intertidal Mud Bottom Bottom

Substrate

Entire Area

Marine Intertidal Unconsolidated

Bottom

Sand Marine Intertidal Sand Bottom Bottom

Substrate

Entire Area

Marine Subtidal Aquatic Bed Kelp Marine Kelp Living Entire Area

Marine Subtidal &

Intertidal

Aquatic Bed Red, Green, Small-brown

Algae

Marine Red, Green, Small-brown Algae Living Entire Area

Marine Subtidal &

Intertidal

Aquatic Bed Rooted Vascular Marine Submerged Aquatic Vegetation Living Entire Area

Marine Subtidal Reef Mollusk Marine Subtidal Shellfish Reef Living Entire Area

Marine Subtidal <200 m Rocky Bottom Bedrock, Rubble, Cobble,

Gravel

Marine Rocky Bottom <200 m Bottom

Substrate

Entire Area

Marine Subtidal <200 m Unconsolidated

Bottom

Mud Marine Mud Bottom <200 m Bottom

Substrate

Entire Area

Marine Subtidal <200 m Unconsolidated

Bottom

Sand Marine Sand Bottom <200 m Bottom

Substrate

Entire Area

Marine Subtidal >200 m Reef Deep Sea Coral & Sponge Deep Sea Coral & Sponge: Gulf of Maine Living Gulf of Maine

Marine Subtidal >200 m Reef Deep Sea Coral & Sponge Deep Sea Coral & Sponge: Seamounts

and Canyons

Living Seamounts &

Canyons

Marine Subtidal >200 m Rocky Bottom Bedrock, Rubble, Cobble,

Gravel

Marine Rocky Bottom >200 m Bottom

Substrate

Entire Area

Marine Subtidal >200 m Unconsolidated

Bottom

Mud Marine Mud Bottom >200 m Bottom

Substrate

Entire Area

Marine Subtidal >200 m Unconsolidated

Bottom

Sand Marine Sand Bottom >200 m Bottom

Substrate

Entire Area

Marine Subtidal &

Intertidal

Reef Mollusk Aquaculture Marine Shellfish Aquaculture Artificial Entire Area

Marine Subtidal &

Intertidal

Rocky Bottom Artificial Structures Marine Artificial Structures Artificial Entire Area

Marine Subtidal <20 m Water Column Shallow Inner Shelf Marine Shallow Inner Shelf Water

Column

Water Column Entire Area

Marine Subtidal <200 m Water Column Shelf Surface Marine Shelf Surface Water Column Water Column Entire Area

Marine Subtidal <200 m Water Column Shelf Bottom Marine Shelf Bottom Water Column Water Column Entire Area

Marine Subtidal >200 m Water Column Slope Surface Marine Slope Surface Water Column Water Column Entire Area

Marine Subtidal >200 m Water Column Slope Bottom Marine Slope Bottom Water Column Water Column Entire Area

Estuarine Intertidal Emergent Wetland Invasive Wetland Estuarine Invasive Wetland: Mid-Atlantic Invasive Mid-Atlantic

Estuarine Intertidal Emergent Wetland Invasive Wetland Estuarine Invasive Wetland: New

England

Invasive New England

Estuarine Intertidal Emergent Wetland Native Wetland Estuarine Native Wetland: Mid-Atlantic Living Mid-Atlantic

Estuarine Intertidal Emergent Wetland Native Wetland Estuarine Native Wetland: New England Living New England

Estuarine Intertidal Reef Mollusk Estuarine Intertidal Shellfish Reef Living Entire Area

Estuarine Intertidal Rocky Bottom Bedrock, Rubble, Cobble,

Gravel

Estuarine Intertidal Rocky Bottom Bottom

Substrate

Entire Area

Estuarine Intertidal Rocky Bottom Artificial Structures Estuarine Intertidal Artificial Structures Artificial Entire Area

Estuarine Intertidal Unconsolidated

Bottom

Mud Estuarine Intertidal Mud Bottom Bottom

Substrate

Entire Area

Estuarine Intertidal Unconsolidated

Bottom

Sand Estuarine Intertidal Sand Bottom Bottom

Substrate

Entire Area

Estuarine Subtidal Aquatic Bed Kelp Estuarine Kelp Living Entire Area

(Continued)
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Similarly, emergent wetland habitats for both the estuarine and riverine systems were further

divided into native (e.g., Spartina spp.) and invasive species (e.g., non-native genotype of

Phragmites australis). Although other prominent invasive plant species occur in the Northeast

U.S. region, their populations are not large enough to form a distinct habitat type like the

dense and pervasive stands of Phragmites australis present in estuaries and tidal and non-tidal

portions of rivers and streams in the region. In the marine system, artificial reefs and intertidal

and subtidal artificial hard bottoms (e.g., riprap for shoreline protection) were assessed under

a single artificial category. However, because of the prevalence of hardened shoreline struc-

tures in the estuarine system, intertidal and subtidal artificial structures were assessed sepa-

rately. All river and stream habitats used by diadromous species were included in the

assessment, and were not differentiated by stream order.

Sensitivity

The sensitivity of habitats to climate change was evaluated using nine sensitivity attributes

(Table 2 and S2 File) covering a diverse range of traits indicative of how a habitat will respond

Table 1. (Continued)

System Sub-system Class Sub-class Common Name Category Geographic Area

Estuarine Subtidal &

Intertidal

Aquatic Bed Red, Green, Small-brown

Algae

Estuarine Red, Green, Small-brown Algae Living Entire Area

Estuarine Subtidal &

Intertidal

Aquatic Bed Rooted Vascular Estuarine Submerged Aquatic Vegetation Living Entire Area

Estuarine Subtidal Reef Mollusk Estuarine Subtidal Shellfish Reef Living Entire Area

Estuarine Subtidal Rocky Bottom Bedrock, Rubble, Cobble,

Gravel

Estuarine Subtidal Rocky Bottom Bottom

Substrate

Entire Area

Estuarine Subtidal &

Intertidal

Reef Mollusk Aquaculture Estuarine Shellfish Aquaculture Artificial Entire Area

Estuarine Subtidal Rocky Bottom Artificial Structures Estuarine Subtidal Artificial Structures Artificial Entire Area

Estuarine Subtidal Unconsolidated

Bottom

Mud Estuarine Subtidal Mud Bottom Bottom

Substrate

Entire Area

Estuarine Subtidal Unconsolidated

Bottom

Sand Estuarine Subtidal Sand Bottom Bottom

Substrate

Entire Area

Estuarine Subtidal Water Column Well-mixed Estuarine Water Column Water Column Entire Area

Riverine Non-tidal Emergent Wetland Invasive Wetland Riverine Non-tidal Invasive Wetland Invasive Entire Area

Riverine Non-tidal Emergent Wetland Native Wetland Riverine Non-tidal Native Wetland Living Entire Area

Riverine Tidal Emergent Wetland Invasive Wetland Riverine Tidal Invasive Wetland Invasive Entire Area

Riverine Tidal Emergent Wetland Native Wetland Riverine Tidal Native Wetland Living Entire Area

Riverine Tidal & Non-

Tidal

Aquatic Bed Algae Riverine Algae Living Entire Area

Riverine Tidal & Non-

Tidal

Aquatic Bed Rooted Vascular Riverine Submerged Aquatic Vegetation Living Entire Area

Riverine Tidal & Non-

Tidal

Rocky Bottom Bedrock, Rubble, Cobble,

Gravel

Riverine Rocky Bottom Bottom

Substrate

Entire Area

Riverine Tidal & Non-

Tidal

Unconsolidated

Bottom

Mud Riverine Mud Bottom Bottom

Substrate

Entire Area

Riverine Tidal & Non-

Tidal

Unconsolidated

Bottom

Sand Riverine Sand Bottom Bottom

Substrate

Entire Area

Riverine Tidal & Non-

Tidal

Water Column Well-mixed Riverine Water Column Water Column Entire Area

See S1 File for a more detailed description of each habitat.

https://doi.org/10.1371/journal.pone.0260654.t001
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to future changes in climate. For example, Habitat Condition and Habitat Fragmentation both

reflect the ability of a habitat to support a natural and fully-functioning ecological community

of organisms, while Mobility/Ability to Spread or Disperse, Resilience, and Sensitivity to

Changes in Abiotic Factors are attributes that measure how well a habitat may respond to

changes in climate. Sensitivity and Intensity of Non-climate Stressors was included to assess

the effects of a suite of anthropogenic stressors on a habitat, because such stressors have the

potential to reduce the ecological function and the ability of habitats to withstand climate-

related stressors [4, 40–42]. This attribute includes non-climate stressors that may affect habi-

tats in riverine (e.g., dams, water diversions), estuarine (e.g., navigational dredging, eutrophi-

cation, shoreline hardening), and marine (e.g., bottom-tending fishing gear, ocean energy

development) systems. To ensure consistency and repeatability in the application of these sen-

sitivity attributes, a written definition and scoring bins were developed for each attribute. The

scoring bins characterize Low, Moderate, High, and Very High scores for each sensitivity attri-

bute. The assessment used a five-tally scoring method, as described in the FSCVA framework,

where each scorer could distribute their five tallies between any of the scoring bins to best

describe the uncertainty and/or the geographic variability within the study area. Whereas it is

possible that some of these sensitivity attributes may have a stronger effect on vulnerability

than others, this relationship is unknown and may differ between habitats; therefore, the sensi-

tivity attributes were all given equal weightings.

Climate exposure

We used eleven equally weighted exposure factors to indicate the magnitude and overlap of

projected changes in climate with the distribution of habitats (Table 3 and S3 File). This meth-

odology uses a wide range of exposure factors, any of which could increase the vulnerability of

Table 2. Sensitivity attributes.

Sensitivity Attribute Assessment Definition

Habitat Condition The ability of the habitat to support a natural, fully-functional ecological

community of organisms and the associated/expected ecosystem services.

Habitat Fragmentation The extent to which a previously contiguous habitat is subdivided into

isolated patches or fragments due to anthropogenic causes.

Distribution and Range The historic geographic extent of a habitat, including the leading (i.e., the

expanding or colonizing) edge and trailing (i.e., contracting or declining)

edge, if applicable, and the water depths for which the habitat naturally

occurs.

Mobility/Ability to Spread or

Disperse

The ability or capability of a habitat to disperse, move, or spread to areas

beyond its existing location.

Resistance The ability of a habitat to tolerate a stressor and persist while retaining its

functionality when subjected to a disturbance.

Resilience The ability of, and the time period for, a habitat to recover from a

disturbance.

Sensitivity to Changes in Abiotic

Factors

A measure of a habitat’s ability to tolerate changes in chemical and physical

characteristics of the environment (temperature, salinity, dissolved oxygen,

carbonate chemistry, and synergistic effects).

Sensitivity and Intensity of Non-

Climate Stressors

A measure of a habitat’s response to existing non-climate stressors, as well as

the intensity of those stressors (dredging/filling, pollution/eutrophication,

invasive species, harmful algal blooms, shoreline hardening, and synergistic

effects).

Dependency on Critical Ecological

Linkages

The extent to which a habitat depends upon associated species to maintain its

health or function as a habitat.

See S2 File for more detailed descriptions of the sensitivity attributes.

https://doi.org/10.1371/journal.pone.0260654.t002
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a habitat, instead of focusing on just a single variable (e.g., temperature). We used this

approach because individual habitats are likely to respond differently to the various changes

that are anticipated with climate change. This multiple stressor approach also allowed us to

identify potential cumulative or compounding impacts of multiple exposure factors. It is

important to note that not all exposure factors directly impact each of these habitats. Only the

factors that were applicable to each habitat were scored. For example, exposure to SLR was

scored for coastal, shallow-water habitats (e.g., emergent wetlands, intertidal mud and sand),

but not offshore habitats (e.g., deep sea corals and sponges). Multiple temperature (surface,

bottom, air, and river) and salinity (surface and bottom) factors were included to account for

variation in conditions by depth and location. To avoid double counting within each habitat,

only the most appropriate temperature or salinity exposure factor was scored.

The selected exposure factors represent the main climate-driven impacts to the function

and viability of habitats in the Northeast U.S. For most of the exposure factors, estimates of

projected change were taken from NOAA’s Ocean Climate Change Web Portal (https://psl.

noaa.gov/ipcc/). Projections were based on the Intergovernmental Panel on Climate Change,

Representative Concentration Pathway 8.5 (RCP 8.5), which represents a scenario that

assumes little to no stabilization of greenhouse gas emissions over the time horizon for the

assessment [99, 100]. We used the results from the downscaled Northwest Atlantic Regional

Ocean Modeling System (ROMS-NWA) for ocean temperature and salinity exposure factor

projections. Precipitation, air temperature (which was used as a proxy for water temperature

in intertidal habitats), and pH were taken from the Coupled Model Intercomparison Project

Phase 5 (CMIP5) global model results. For precipitation, experts considered the projected

change in the annual mean from CMIP5 as well as information on the projected change in the

frequency and intensity of extreme precipitation events (S3 File). Reproducing the method

used in NOAA’s previous CVAs [81–83, 101], scoring of these model-derived exposure factors

was based on a comparison of the future modeled mean to the historic variability as a change

in standard deviations. However, unlike these previous CVAs, which were based on mid-cen-

tury projections, the end-of-century time frame was applied in this study because the struc-

tures in many large-scale projects that may impact fish habitats (e.g., bridges and roads,

hydropower dams, and major coastal, offshore, and urban development) can be in place over a

50 to 75-year time horizon [38]. In addition, for temporal scales less than 50 years, natural var-

iability contributes substantial uncertainty in climate projections over local and regional spa-

tial scales [102, 103]. For example, the change in global mean sea surface temperature for the

Table 3. Exposure factors.

Exposure Factor Projection / Source

Sea Surface Temperature Northwest Atlantic Regional Ocean Modeling System

Bottom Temperature Northwest Atlantic Regional Ocean Modeling System

Sea Surface Salinity Northwest Atlantic Regional Ocean Modeling System

Bottom Salinity Northwest Atlantic Regional Ocean Modeling System

pH Coupled Model Intercomparison Project Phase 5

Precipitation Coupled Model Intercomparison Project Phase 5

Air Temperature Coupled Model Intercomparison Project Phase 5

Streamflow (Floods and Droughts) Demaria et al. (2016)

River Temperature Letcher et al. (2016)

Sea Level Rise Sweet et al. (2017)

See S3 File for more detailed descriptions of the Streamflow, River Temperature, and Sea Level Rise exposure factors.

https://doi.org/10.1371/journal.pone.0260654.t003
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first half of the 21st century is similar under most emission scenarios and increasingly diverges

later in the century [104]. The end-of-century time frame for ROMS-NWA is 2070–2099, and

for CMIP is 2050–2099. The exposure scoring bins from the FSCVA were scaled to appropri-

ately capture the greater changes expected by the end of the century, and to ensure compara-

bility with the species vulnerability assessments.

Projections for SLR were based on the 1.0 m (Intermediate) mean global SLR scenario for

2100 [77], which resulted in a range of SLR between 1.2 and 1.4 m for the study area. Because

other projections (ROMS, CMIP) present mean change over a broader period of time (i.e., the

latter half of the 21st century), we chose a SLR projection matching the midpoint of the

broader projections. The exposure score for SLR was based on both the magnitude of change

in sea level and spatial overlap of the relevant habitats with projected change in sea level (S3

File). For example, intertidal habitats were assumed to have greater exposure to SLR than shal-

low water subtidal habitats.

Because the climate drivers in the riverine system are very different from those in the marine

and estuarine systems, we developed a suite of additional exposure factors that are unique to riv-

erine habitats. For example, river flow rates are driven by a complex array of factors (e.g. precip-

itation, evapotranspiration, groundwater contributions, land use, and anthropogenic water

management) [105], such that precipitation alone is not an adequate proxy to capture the

impact of climate change on stream and river flow. Therefore, we developed a scoring rubric for

flooding and droughts based on a suite of regional streamflow projections [106] (S3 File).

Similarly, air temperature is not a linear predictor of river temperature, which is also influ-

enced by landscape and environmental drivers such as riparian cover, snow melt, and ground-

water [107]. River temperature projections were based on data retrieved from the U.S.

Geological Survey’s (USGS) Spatial Hydro-Ecological Decision System (SHEDS) Stream Tem-

perature Model [107]. Using the +4˚C air temperature scenario (an approximation of the end-

of-century projections in the Northeast U.S.), we used the projected mean summer stream

temperature, historic mean summer stream temperature, and the variability of the historic

mean stream temperature to develop scoring bins similar to our modeled climate projections

for other exposure factors. These data were aggregated by the USGS Watershed Boundary

Dataset 6-digit hydrological unit code (HUC6) basins and displayed on a map color coded

with the appropriate scoring bins (S3 File). The SHEDS model includes temperature data for

first, second, and third order streams only, largely due to greater potential influence of non-cli-

mate anthropogenic activities on temperatures in larger rivers. For the purposes of this assess-

ment, we used the aggregated HUC6 stream temperature data for all riverine habitats.

Scoring protocol

The scoring for this assessment was based on the protocol described in the FSCVA framework

[88]. Fifteen experts participated in the sensitivity scoring, with five experts scoring each of the

three systems (marine, estuarine, and riverine). Experts from academia, state, and federal insti-

tutions were selected based on recommendations from regional NOAA Fisheries and fishery

management council staff to cover a range of geographic and habitat expertise. We conducted

a pilot scoring with a subset of scorers and habitats to gather feedback on the process, resulting

in improvements in the guidance materials and sensitivity attribute definitions. Scoring was a

two-step process similar to the Delphi approach [108, 109]. Experts were first given the oppor-

tunity to independently score each sensitivity attribute for each habitat based on the Sensitivity

Attribute Definitions (S2 File), a synthesis of information and literature for each habitat pro-

vided to the experts in “habitat profiles”, and their own knowledge of the habitat. In addition,

the experts assigned a data quality score for the sensitivity attributes for each habitat to reflect
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the availability of information and uncertainty (Table 4). At the end of this initial round, the

scores from each expert were compiled and analyzed for discussion. A second round of scoring

was completed at a facilitated workshop in February 2020, where the fifteen experts discussed

their individual scores and were given the opportunity to adjust their scores based on group

discussions. Many of the habitats were closely related between systems (e.g., intertidal rocky

bottom in the marine and estuarine systems), so experts from other systems were encouraged

to participate in the discussions for similar habitats. This two-step scoring process necessitated

each expert to develop their own scores based on the materials provided and their expert opin-

ion, and then leverage the knowledge and expertise of the other experts shared at the facilitated

workshop to inform their final scores. This process alleviates geographic bias or differing inter-

pretations of the materials used during scoring. However, experts were not compelled to

change their scores, as consensus was not the aim.

The exposure factors for all habitats were scored by five experts with experience using cli-

mate projections in vulnerability assessments. Maps depicting the distribution of each habitat

were generated primarily from the Northeast Data Portal (https://www.northeastoceandata.

org/) and the Marine Cadastre (https://marinecadastre.gov/). For habitats whose distribution

was not well mapped in the study area (e.g., red, green, and small brown algae), or occurred at

too fine a scale for spatial comparison with climate projections (e.g., riverine bottom sub-

strate), experts relied on a textual description of the habitat’s distribution. Independently, each

climate exposure expert visually integrated the habitat distribution maps with the climate pro-

jection maps and provided a score for each exposure factor based on the overlap between the

habitat distribution and the magnitude of the change in exposure. If an exposure factor was

not directly applicable to a habitat (e.g., river temperature is not directly relevant to offshore

habitats), the factor was not scored. Each exposure factor was also given a data quality score by

each expert to reflect any perceived uncertainties based on the availability and resolution of

habitat mapping and the resolution of the modeled climate exposure projections. The resulting

exposure scores were compiled and analyzed for discussion with the other scorers. The second

round of exposure scoring was completed over a series of webinars where differences in scor-

ing and nuances in the projections and habitat maps were discussed. Experts were then given

an opportunity to adjust their scores based on these discussions.

Calculating vulnerability ranks

Overall vulnerability ranks for each habitat were calculated in a three-step process developed

in the FSCVA framework. The scoring bins for the sensitivity attributes and exposure factors

were assigned a numerical value (Low = 1, Moderate = 2, High = 3, Very High = 4). A weighted

Table 4. Data quality matrix.

Data Quality

Score

Description

3 Adequate Data. The score is based on data which have been observed, modeled or empirically

measured for the habitat in question and come from a reputable source.

2 Limited Data. The score is based on data which has a higher degree of uncertainty. The data

used to score the attribute may be based on related or similar habitat, come from outside the

study area, or the reliability of the source may be limited.

1 Expert Judgment. The attribute score reflects the expert judgment of the reviewer and is based

on their general knowledge of this attribute for the habitat or a related habitat.

0 No Data. No information to base an attribute score on. Very little is known about this attribute

for this habitat, and there is no basis for forming an expert opinion (to be used judiciously).

Criteria used in sensitivity and exposure scoring to identify quality and availability of data.

https://doi.org/10.1371/journal.pone.0260654.t004
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mean for all the tallies across all expert’s scores was calculated for each attribute and factor.

These attribute and factor means were rolled up into a component score by applying the logic

model described in Table 5. The purpose of this logic model is to identify the attributes of

highest importance for a habitat. Averages were not used to calculate component scores

because the low scores tend to devalue important drivers of climate vulnerability. Note that the

criteria for the Very High component score is a difficult threshold to achieve and was designed

to indicate that the habitat has multiple very large climate vulnerability drivers. Finally, the

component scores were multiplied to provide a categorical vulnerability rank classified as: 1–3

low, 4–6 moderate, 8–9 high, and 12–16 very high.

This methodology utilizes discrete scoring thresholds at several stages while calculating

overall vulnerability rank. To detect borderline cases, where the change in just a few tallies in

one or more attributes could change the overall vulnerability rank, we conducted a bootstrap

analysis for each habitat. The tallies for every attribute and factor were resampled, with

replacement, which were then used to recalculate the attribute means, component scores, and

vulnerability ranks. Each outcome was recorded and the process repeated 5,000 times. The

proportion of the outcomes in each bootstrap vulnerability rank was then compared to the cat-

egorical vulnerability rank. This analysis helped identify borderline cases where there was a

significant likelihood the habitat could have a higher or lower vulnerability rank. In addition, a

leave-one-out sensitivity analysis was performed by leaving out the score for each sensitivity

attribute or exposure factor to identify its influence on the overall vulnerability rank across

habitats. The same analysis was performed to identify the influence of each scorer on the vul-

nerability ranks for the system they scored.

An additional analysis was performed on the riverine habitats based on feedback that the

classification system may have obscured key interdependencies between riverine habitats. As

part of this additional analysis, the individual tallies of the exposure and sensitivity from the riv-

erine water column were combined with the tallies for riverine aquatic bed (algae and sub-

merged aquatic bed), and streambed and bank rocky, sand, and mud bottom habitats. New

sensitivity and exposure component scores were calculated based on these combined bed and

water column tallies, then the logic model was applied to develop combined vulnerability ranks.

Direction of climate effect

After completing the final round of scoring in the February 2020 workshop, the habitat experts

were queried on what the overall effect of climate change would be for each habitat (i.e., posi-

tive, neutral, or negative). As an example, positive climate effects could include expansion of

range, improved condition of the habitat, or reduced habitat fragmentation. Negative climate

impacts could include a contraction of range, reduced condition of the habitat, increased

Table 5. Logic rule for calculating climate exposure and sensitivity for each habitat type.

Logic Rule Component Score Habitat Sensitivity and Exposure Categorical Rank

3 or more attribute or factor

means� 3.5

4 Very High

2 or more attribute or factor

means� 3.0

3 High

2 or more attribute or factor

means� 2.5

2 Moderate

All other scores 1 Low

The scoring rubric is based on a logic model where a certain number of individual scores above a certain threshold

are used to determine the overall climate exposure and sensitivity (Hare et al. 2016).

https://doi.org/10.1371/journal.pone.0260654.t005
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fragmentation, or a loss of critical ecological linkages. Scoring was completed similarly to the

sensitivity attribute scoring – each expert was given four tallies to spread amongst three scor-

ing bins. The tallies for each habitat were summed across all experts’ scores, and summary sta-

tistics were calculated. Positive tallies received a value of 1, neutral received 0, and negative

received -1. If the weighted average of the tallies was greater than 0.5, the habitat was classified

as likely to be positively affected by climate change; conversely, if the value was less than -0.5,

the habitat was classified as likely to be negatively impacted by climate change.

Habitat narratives

Summaries of the assessment results and information used to score each habitat’s climate vul-

nerability were compiled into habitat narratives (S4 File). These narratives may be informative

to end users, as they identify the details of the important drivers of climate sensitivity, expo-

sure, and vulnerability ranks, the key data gaps, relevant non-climate stressors, and overall cli-

mate vulnerability of each habitat.

Results

Overall habitat climate vulnerability

The climate vulnerability ranks for the 52 habitats spanned from Low to Very High (Fig 1 and

S5 File). The Low vulnerability rank contained the largest number of habitats (20 habitats;

38%), followed by High (14 habitats; 27%), Moderate (14 habitats; 27%), and Very High (five

habitats; 10%).

The marine system had the highest proportion of habitats with High or Very High vulnera-

bility ranks (nine habitats, 39%), followed by seven habitats (37%) in the estuarine system, and

three habitats (30%) in the riverine system (Fig 2). The five habitats receiving Very High vul-

nerability ranks were all living habitats in the marine and estuarine systems. Fifteen of the top

twenty most vulnerable habitats were in the living category according to the categorical rank-

ing (Fig 3). Habitats in the artificial structures and invasive categories generally had the lowest

vulnerability ranks, none of which ranked greater than Moderate.

The supplemental riverine analysis that combined riverine water column with other river-

ine habitats yielded two differences from the original results (Table 6). First, when combined

with water column scores, riverine rocky bottom changed from Low to Moderate sensitivity

and vulnerability. Second, riverine submerged aquatic vegetation changed from High to Mod-

erate sensitivity and vulnerability. The change for submerged aquatic vegetation is counterin-

tuitive given that both riverine water column and submerged aquatic vegetation had High

vulnerability ranks in the original analysis, but can be explained by the way the logic model is

used to calculate vulnerability. Specifically, different attributes drove the High sensitivity ranks

for the two individual habitats such that when combined, the component scores no longer met

the threshold for a High sensitivity rank.

Sensitivity

Sensitivity ranks for habitats ranged from Low to Very High. One half (26) of the habitats were

ranked as Low, 15 were High (29%), nine were Moderate (17%), and only two were Very High

(4%). The two habitats with Very High sensitivity ranks (deep sea coral and sponge habitats

for both Gulf of Maine and the seamounts and canyons) had multiple High to Very High

mean sensitivity attribute scores. The sensitivity attributes that had the strongest influence on

climate vulnerability were Sensitivity to Changes in Abiotic Factors and Sensitivity and Inten-

sity of Non-Climate Stressors (Fig 4A). Removal of the Sensitivity to Changes in Abiotic
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Factors attribute in the leave-one-out sensitivity analysis changed the vulnerability ranks of six

habitats, and removal of the Sensitivity and Intensity of Non-Climate Stressors attribute

changed the vulnerability ranks of five habitats. Removal of Resilience and Habitat Fragmenta-

tion each changed the vulnerability ranks of two habitats. Due to the way the logic model cal-

culates categorical ranks, in every case where the leave-one-out sensitivity analysis changed the

vulnerability of a habitat, the vulnerability went down by one rank. Habitat Condition scored

High for many of the marine and estuarine nearshore and riverine living habitats (Fig 4B).

Dependency on Critical Ecological Linkages generally had the lowest scores of all the sensitiv-

ity attributes. Scorers debated the importance and meaning of this attribute, which may have

contributed to its low scores. A sensitivity analysis to identify the influence of individual scor-

ers found that no scorers had outsized influence on the vulnerability ranks. Two scorers had

slightly greater influence than others, and removal of those two scorers only changed the vul-

nerability ranks of three habitats each. Overall, the leave-one-out analysis for scorers increased

the vulnerability in 13 habitats and decreased the vulnerability in seven (each by one rank).

Climate exposure

Overall, the climate exposure ranks for habitats tended to be higher than their sensitivity

ranks; 37 of the 52 habitats had higher exposure ranks, whereas only three had higher

Fig 1. Overall climate vulnerability matrix. Overall climate vulnerability rank is denoted by color: low (green), moderate (yellow), high (orange), and

very high (red). Mar = Marine; Est = Estuarine; Riv = Riverine. Categorical ranks used for overall habitat vulnerability in the matrix, and order within

each vulnerability cell based on bootstrap rank. Borderline cases from bootstrap results indicated with bold and italics: bold�0.25 probability that the

habitat’s vulnerability rank is one rank higher than the categorical rank; italics�0.25 probability that the habitat’s vulnerability rank is one rank lower

than the categorical rank; �bootstrap analysis found the greatest probability that the habitat’s vulnerability rank is one rank lower than the categorical

rank; ��bootstrap analysis found the greatest probability that the habitat’s vulnerability rank is one rank higher than the categorical rank.

https://doi.org/10.1371/journal.pone.0260654.g001
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sensitivity ranks (12 had the same sensitivity and exposure ranks). Although exposure ranks

ranged from Low to Very High, most of the habitats received a High rank (30; 58%), followed

by Very High (13; 25%), Moderate (8; 15%), and Low (1; 2%). The exposure factors that had

the strongest influence on climate vulnerability were pH, Temperature (Air, Surface, Bottom,

and River), and SLR (Fig 5A). Removal of pH in the leave-one-out sensitivity analysis changed

the vulnerability ranks of 72% of the habitats for which that exposure factor was scored (23 of

32 habitats); removal of Temperature exposure factors changed the vulnerability ranks of 42%

of habitats for which those exposure factors were scored (22 of 52 habitats); and removal of

SLR changed the vulnerability ranks of 65% of the habitats for which that exposure factor was

scored (13 of 20 habitats). In the riverine system, removal of Floods changed the vulnerability

rank of one habitat, and removal of Floods and Droughts together changed the vulnerability

rank of five habitats (50%). Precipitation was not highly influential for any of the exposure

ranks of all three systems. Bottom temperature had the lowest overall scores across all of the

temperature exposure factors (Fig 5B). The sea level rise and two salinity exposure factors had

a large spread, reflecting spatial variability in the study area.

Bootstrap analysis

For the majority of habitats, the bootstrap outcomes matched the categorical vulnerability

ranks calculated from the experts’ tallies. However, the bootstrap analysis identified ten habi-

tats that had more than 25% of the outcomes in a higher or lower vulnerability rank, and all

but two were influenced primarily by the exposure scores. This finding indicated that the cli-

mate vulnerability of these habitats are on the borderline between vulnerability ranks. Four of

Fig 2. Climate vulnerability in the marine, estuarine, and riverine systems. Number of habitats in the marine (A),

estuarine (B), and riverine (C) systems with low, moderate, high, and very high vulnerability ranks. Certainty in rank is

denoted by text font and text color: very high certainty (>95%, black font), high certainty (90–95%, black, italic font),

moderate certainty (66–90%, white font), low certainty (<66%, white, italic font).

https://doi.org/10.1371/journal.pone.0260654.g002

Fig 3. Relative climate vulnerability by category. Proportion of habitats in each category with low, moderate, high, and

very high vulnerability ranks.

https://doi.org/10.1371/journal.pone.0260654.g003
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Table 6. Supplemental riverine analysis.

Riverine Habitat Combinations Rank

Sensitivity Exposure Vulnerability

Algae + water column Low High Low

Submerged aquatic vegetation + water column Moderate High Moderate

Rocky bottom + water column Moderate High Moderate

Mud + water column Moderate High Moderate

Sand + water column Moderate High Moderate

https://doi.org/10.1371/journal.pone.0260654.t006

Fig 4. Sensitivity attributes. Results of sensitivity analysis for the influence of individual sensitivity attributes on

overall vulnerability rank (A) and mean sensitivity scores across all habitats [boxes represent median and interquartile

range (IQR), whiskers are values within 1.5�IQR, and points are potential outliers] (B).

https://doi.org/10.1371/journal.pone.0260654.g004
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these habitats had greater than 50% of the bootstrap outcomes in a different rank, indicating

an extreme case of borderline categorical rank (i.e., deep sea coral and sponge: seamounts and

canyons, riverine water column, estuarine intertidal rocky bottom, and riverine tidal native

wetland). The habitat narratives discuss the specific details for each of these cases (S4 File).

Direction of climate effect

Based on the experts’ qualitative assessment of climate vulnerability, 54% (28) of the habitats

are expected to be negatively impacted by climate change, 38% (20) are expected to be

Fig 5. Exposure factors. Results of sensitivity analysis for the influence of individual exposure factors on overall

vulnerability rank (A) and mean exposure scores across all habitats (boxes represent median and interquartile range

(IQR), whiskers are values within 1.5�IQR, and points are potential outliers) (B). All four Temperature exposure

factors (Air, Surface, Bottom, River) were analyzed together in the sensitivity analysis, since only one temperature

exposure factor was scored for each habitat. The same was done for the two Salinity exposure factors (Surface,

Bottom).

https://doi.org/10.1371/journal.pone.0260654.g005
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neutrally impacted by climate change, and only 8% (4) of the habitats are expected to be posi-

tively affected by climate change (S6 File). Most of the marine system habitats were classified

as being negatively impacted by climate change, whereas potential impacts to estuarine and

riverine system habitats were more mixed (Fig 6). When split by category, the majority of liv-

ing and water column habitats were expected to be negatively impacted by climate change (Fig

7). The four invasive emergent wetland habitats were the only habitats that were expected to

be positively affected by climate change.

Discussion

The results of this habitat climate vulnerability assessment revealed a wide range of climate

vulnerabilities for marine, estuarine, and riverine habitats in the Northeast U.S. This assess-

ment found that climate exposure had a greater influence than sensitivity on the overall cli-

mate vulnerability for most habitats. The climate models used in our assessment projected that

a number of climate factors will deviate substantially from the historical variability and range.

This is consistent with other climate studies for the Northeast U.S., including projected

changes in sea surface temperature [76, 110, 111], sea levels [77], and ocean pH and aragonite

saturation state [112, 113], and as reported in other climate vulnerability assessments for this

region [81, 114]. Many of the habitats with high sensitivity to physical and chemical changes

associated with climate change, including increasing temperature, ocean acidification, and

SLR, ranked the highest in overall climate vulnerability. However, even habitats with moderate

sensitivity will be vulnerable to climate change given the magnitude of the projected changes.

Projected change in temperature (surface, bottom, air, and riverine) was an important cli-

mate driver for nearly all of the habitats evaluated. While the CMIP5 and ROMS-NWA

Fig 6. Direction of climate effect by system. Proportion of habitats in each system expected to be positively, neutrally, and negatively affected by

climate change.

https://doi.org/10.1371/journal.pone.0260654.g006
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projections used in this assessment generally show more uniform warming across the U.S.

Northeast, regional ocean observations, in the surface and bottom, indicate that the Gulf of

Maine and Georges Bank have warmed faster than the Mid-Atlantic Bight [115]. This

enhanced warming in New England waters is associated with a northern shift of the Gulf

Stream and a weakening of the Labrador Current around the tail end of the Grand Banks

[116–118], which is resolved in the high-resolution global climate model CM2.6 [76]. There-

fore, marine habitats in portions of the Gulf of Maine, where Gulf Stream associated slope

water enters at a greater proportion, and along the shelf break and flanks of Georges Bank may

be more vulnerable to climate change than other areas. The CM2.6 model resolves this regional

circulation change [76] and is consistent with recent observations indicating a faster and less

uniform warming than the ROMS-NWA model, which may have caused the temperature

scores for offshore habitats to be biased low in our assessment.

Ocean acidification was also a major factor in the climate exposure for marine and estua-

rine habitats based on the large projected decrease in pH (20–60 standard deviations from the

historical mean). However, the impacts of higher concentrations of CO2 and acidification for

some habitats are generally not well known, and could potentially be advantageous for habitats

such as fleshy alga, submerged aquatic vegetation, and emergent wetlands [62, 113, 119–121].

SLR was also an important driver of vulnerability for all intertidal habitats in the marine and

estuarine systems. The exposure scores for Droughts and Floods were less important for river-

ine habitats than temperature overall, which may be a result of the variable patterns of pro-

jected change in high and low flow events over the study area [106], whereas the trend for

temperature is unidirectional.

Fig 7. Direction of climate effect by category. Number of habitats in each category expected to be positively, neutrally, and negatively affected by

climate change.

https://doi.org/10.1371/journal.pone.0260654.g007
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Patterns in climate vulnerability across habitats

The majority of the habitats that were identified as highly or very highly vulnerable to climate

change are living and occur in the estuarine and marine coastal environment, including emer-

gent wetlands, shellfish reefs, subtidal kelp, and submerged aquatic vegetation, and several

intertidal habitats in both the estuarine and marine systems. At least 50% of all commercially

valuable fish and shellfish in the U.S. depend upon estuaries and nearby coastal waters during

one or more life history stages [122], although other reports estimate the dependency as high

as 85% [123]. In particular, estuaries provide critical nursery and settlement habitat for many

species [122, 124, 125]. Destruction or even a reduction in the condition of important estua-

rine and coastal habitats can ripple through the food web and lead to decreased abundance of

commercially important fish and shellfish species [126–130].

Coastal wetlands, submerged aquatic vegetation, and shellfish reefs minimize coastal flood-

ing, erosion, and runoff, and provide protection to the coastal environment from storm surge

and higher sea levels [131, 132]. In addition, because carbon sequestered in the soils of coastal

wetlands can be stored for centuries to thousands of years, the loss of coastal wetlands will

have significant implications for mitigating greenhouse gas emissions [133, 134]. Stored car-

bon often is released to the atmosphere when wetlands are destroyed or converted to a differ-

ent habitat type [135–137], or through increased decomposition due to higher temperature

[27, 30]. Although living habitats may have some capacity to adapt to climate change through

long-term genetic change, or through short-term acclimatization and phenotypic plasticity,

the rate of climate change could exceed the adaptive capacity of many aquatic habitats [32,

138, 139].

Climate change impacts coastal habitats in a multitude of ways. Estuarine and shallow

coastal marine water temperatures are influenced by atmospheric warming and solar radiation

to a greater degree than oceanic waters. Habitats in the intertidal and shallow subtidal zone are

also vulnerable to increased inundation by higher sea levels, erosion, and more frequent and

intense coastal storms, leading to physical disruption and conversion of the habitat to a differ-

ent type (e.g., vegetated to unvegetated, intertidal to subtidal) [25, 52, 140, 141]. In addition,

because coastal waters are subject to more sources of low-salinity, acidic waters from rivers

and streams, and generally are less buffered than oceanic waters, they are potentially more sus-

ceptible to acidification than oceanic waters [31, 113]. More frequent and intense precipitation

events can also decrease the salinity and dissolved oxygen conditions in estuarine waters for

extended periods of time, such as occurred in the Chesapeake Bay in 2018 and 2019 [142],

with implications for fish and shellfish.

Many coastal emergent wetlands in the Northeast U.S. have failed to keep pace with SLR

over the past few decades [54, 143–146], leading to erosion and submergence of marsh plat-

forms, and loss of coastal wetland habitat [52, 147]. The mean rate of SLR in the Northeast U.

S. over the 20th and 21st centuries has been approximately 2–6 mm per year [148], and could

increase to approximately 12–14 mm per year by the end of the century under a 1.0 m global

SLR scenario [77]. Some studies in the Northeast U.S. have reported maximum vertical accre-

tion rates for coastal emergent wetlands of around 5–7 mm per year [49, 145, 149, 150], sug-

gesting that many coastal emergent wetlands may become inundated by rising sea levels in the

second half of the 21st century. Furthermore, coastal areas hardened by shoreline structures

will restrict the capacity of coastal wetlands to migrate inland with increasing SLR [25, 50,

151].

The coastal habitats that were identified as having the highest climate vulnerability are also

those most often at risk from degradation due to coastal development. Coastal habitats are

threatened by stormwater pollution, eutrophication and general water quality degradation,
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navigational dredging, shoreline hardening, dredging and filling for coastal development, and

the spread of invasive species [37, 38, 42, 152, 153]. Climate-related impacts are likely to exac-

erbate historic and ongoing degradation of habitats that are already in poor condition from

non-climate, anthropogenic impacts [4, 40, 41].

Deep sea corals and sponges found on both seamounts and canyons in the Mid-Atlantic

and the Gulf of Maine were the fourth and sixth most vulnerable habitats for all systems,

respectively. While deep sea corals and sponges are believed to have lower exposure to many

non-climate, anthropogenic effects due to their water depths and distance from shore, these

habitats are generally expected to be very sensitive to changes in climate [17, 154, 155], and to

anthropogenic activities such as bottom-tending fishing gear. Current observations and his-

toric records suggest that coral habitats were once more extensive in the Gulf of Maine and

that current habitat represents refuges that have persisted in the face of intensive bottom fish-

ing, while much of the habitat that was lost has not recovered [66, 96, 156].

Riverine habitats that support diadromous species are experiencing significant climate

impacts, including changing hydrology and increasing water temperature. In the past century,

stream discharges for rivers with near-natural streamflow in New England and the Mid-Atlan-

tic have generally increased, as have the magnitude and frequency of floods [157–161]. Climate

studies that incorporate hydrological models have projected increased variability in stream-

flow, with greater frequencies of both high-flow and low-flow events predicted for much of the

Northeast region [106, 162]. Changes in streamflow magnitude, frequency, and timing can

impact riverine habitats and the aquatic species that rely on them [163, 164]. Increases in high

flow events can cause stream channel erosion and increased sediment, nutrient, and microbial

pathogen delivery to streams, while droughts and decreases in low flow volume can expose

aquatic organisms to high temperatures and low dissolved oxygen [105]. Stream temperatures

are projected to increase significantly by the end of the century, with the largest increases in

the southern Mid-Atlantic and northern New England [107]. These changes make cold- and

cool-water rocky-bottom river systems in the Northeast U.S., and the species they support,

particularly vulnerable, with implications to food web structure and energy flow in riverine

communities [165–169]. In addition, riverine habitats have been historically altered by a host

of non-climate perturbations, including damming, water diversion, mineral mining, and

storm water pollution [170–173], which can exacerbate climate-related changes in temperature

and streamflow.

We considered the vulnerability of several artificial and invasive habitats due to their preva-

lence in the region and the role they play in providing habitat for some species. The vulnerabil-

ity ranks for all of these habitats were Moderate and Low. Artificial structures constructed in

the subtidal zone include many different materials and purposes, from shoreline protection

(e.g., groins, jetties), wrecks, and artificial fishing reefs. Although the materials used in artificial

reefs and wrecks are often non-natural (e.g., concrete, steel), they also support biotic commu-

nities that can provide ecosystem benefits in some cases. Many of the organisms associated

with these structures, particularly mollusks and other shell-forming organisms, are sensitive to

changes in temperature and pH. Conversely, artificial structures such as riprap revetments and

seawalls constructed for shoreline protection generally support less diverse communities and

provide fewer ecological benefits compared to natural shoreline habitats [174–177], and can

contain higher occurrences of marine exotic/invasive species compared to native material

[178–180].

Four habitats were assessed under the invasive category: two estuarine (New England and

Mid-Atlantic) and two riverine (tidal and non-tidal waters) emergent wetland habitat types.

These habitats were the only ones in the assessment expected to be positively affected by cli-

mate change. The results here are consistent with other studies which suggest invasive species
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(e.g., Phragmites) may be better adapted to anthropogenic stressors and the effects of climate

change, and can out-compete native plant community habitats [42, 181, 182].

Management applications and future research

The climate vulnerability of habitats has important implications for the management and pro-

tection of fisheries and protected species. Loss, change, or degradation of habitats will impact

the species that depend on them. For example, even when a physical habitat may appear to be

unchanged, increasing water temperature can impact the water column surrounding it, which

in turn can affect the distribution and abundance of associated species, with potential ecosys-

tem-wide effects [37, 42, 183, 184].

Understanding habitat vulnerability can provide a more complete picture of the vulnerabil-

ity of species. For example, the FSCVA [81] ranked winter flounder as very highly vulnerable

to climate change due to low stock status in the southern part of its range and declining popu-

lation productivity associated with increased nearshore temperature that has been linked to

poor stock recruitment. Habitats important to winter flounder—including submerged aquatic

vegetation, kelp, intertidal sand and mud, and tidal wetlands [124, 185–188]—are vulnerable

to higher air and water temperature, SLR, and habitat fragmentation. The high climate vulner-

ability of these habitats, and high dependency of winter flounder on these habitats, suggests a

potential critical nexus of climate vulnerability for this species. More broadly, the results from

this assessment may help fisheries managers better understand ecosystem drivers of species

vulnerability, particularly in cases where fish populations, at least in part, are not meeting fish-

ery objectives due to factors other than fishing mortality [7, 39, 41, 42, 189–191].

The results of this assessment can be used by managers in several additional ways, including

updates to designations for Essential Fish Habitat (EFH) and Habitat Areas of Particular Con-

cern under the Magnuson-Stevens Fishery Conservation and Management Act, especially as

species distributions shift into new areas. They can also be used to support EFH consultations,

Endangered Species Act consultations and critical habitat designations, environmental assess-

ments and environmental impact statements prepared under the National Environmental Pol-

icy Act, and updates to Fishery Management Plans. Information about climate vulnerability

can also be used to prioritize investments in habitat conservation and restoration. Those

involved in developing or implementing state wildlife action plans or place-based management

plans like the National Estuary Program’s Comprehensive Conservation Management Plans

may find this assessment useful as it will help identify vulnerable habitats and assist in priori-

tizing efforts to mobilize conservation action and collaboration. Similarly, these results can

inform coastal and ocean planning to minimize impacts on highly vulnerable habitats from

nearshore and offshore development, and build coastal resilience. As an example, living shore-

lines that incorporate vegetation alone or in combination with hardened shoreline structures

can serve as an alternative approach to traditional “gray” coastal infrastructure for risk reduc-

tion, and may provide additional social and ecological benefits [176, 192–194]. Protecting and

conserving riverine, estuarine, and marine habitats not only provides productive, functioning

habitat for fish, invertebrate, and protected species populations in the short-term, but also

increases the climate resiliency of habitats in the long-term.

One of the goals of this assessment was to develop a framework for habitat climate vulnera-

bility that can be applied to other regions. After applying this framework for habitats in the

Northeast U.S. region, several elements may be improved upon in future assessments. Classify-

ing the habitats into meaningful categories required balancing the need to keep the assessment

to a manageable number of habitats, but avoiding generalized habitat types that would miss

important nuances. For example, the marine artificial structures category included several
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types of structures (e.g., artificial reefs, wrecks, jetties, riprap, and living shorelines), making it

difficult to provide a single sensitivity score. We also chose to score bottom substrate, living,

and water column habitats separately, rather than assessing “ecological niches” made up of

multiple habitat types (e.g., intertidal rocky bottom with attached kelp). In the riverine system,

we did not separate habitats into different thermal regimes or sizes. These decisions may have

had implications for the vulnerability ranks of some habitats. For instance, it is documented in

the literature that cold water, rocky bottom stream habitats are highly vulnerable to climate

change [149, 150, 153], so the low vulnerability rank for rocky bottom habitat may have missed

important relationships between water column and substrate, and the different ecological roles

of cold- and warm-water riverine habitats. Although we conducted supplemental analyses to

better understand the vulnerability of riverine “ecological niche” habitats after the scoring pro-

cess was complete, future assessments may consider defining riverine habitats differently.

Future assessments may consider additional exposure factors, and synergies between them.

This climate vulnerability framework could benefit from a greater consideration of exposure

to extreme weather events. While extreme precipitation events were considered, this assess-

ment did not account for exposure to marine heatwaves or other events anticipated to occur as

a result of climate change. Further, because climate projections were not readily available for

water column stratification [110, 195] and hypoxia [196], we did not evaluate these climate

exposure factors, but their impacts on habitat quality may warrant inclusion in future habitat

CVAs. Lastly, a number of climate exposure factors, such as warming waters, ocean acidifica-

tion, and deoxygenation, can interact with one another and with other stressors to cause com-

plex and often unanticipated synergistic climate impacts on habitats in the Northeast U.S. [4,

30, 31, 33]. Assessing potential synergistic and additive climate impacts may be useful for

future CVAs.

This assessment applied a broad approach to examining the vulnerability of marine, estua-

rine, and riverine habitats across the Northeast U.S. to climate change. Yet, climate change

often impacts habitats at much smaller scales, and exposure and sensitivity may also vary

between watersheds, estuaries, or basins. Thus, the climate vulnerability ranking of some habi-

tats may have been higher or lower had we conducted this assessment on a smaller geographic

scale. One of the challenges in a smaller-scale analysis is the resolution of climate models,

underscoring the importance of downscaled climate models with better resolution in the near-

shore and coastal environments. Finally, this assessment complements prior work to under-

stand the vulnerability of fish and invertebrate species [81] and fishing communities in the

Northeast U.S. [114] because climate vulnerabilities of these components of the system are

closely linked. For instance, the vulnerability of a habitat influences the vulnerability of

species, which in turn influences the vulnerability of communities that rely on those habitats

and species. Future assessments should therefore examine the vulnerability of each of these

components as a connected social-ecological system rather than as individual, independent

parts.
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